
TCP Automatic Tuning Techniques
for Distributed Computing

Eric Weigle and Wu-chun Feng
RADIANT Team, CCS-1

Los Alamos National Laboratory
{ehw, feng }@lanl.gov

“Hi everybody!” at HPDC02, July 2002

1

Introduction

• For good performance, distributed/grid applications need efficient networking–
this commonly means optimizing TCP.

• The most important tuning parameter is buffer sizes; With an ideal size we:

– Are not flow window limited (BIG buffers)
– Maintain interactivity (small buffers).
– Avoid loss– TCP AIMD painful; purposefully confuse flow/congestion

control (buffer size below “instantaneous” bandwidth× delay).

With TCP, you can’t have it all.

• This talk compares various techniques that perform this tuning automatically.
Outline:

– Taxonomy
– Compare/contrast
– Experiments
– Results

2

Who cares? (The Joy of Buffer Tuning)

• We need to ensure our buffers are large enough to “fill the pipe”– That is,
they must be able to hold a bandwidth× delay product’s worth of data.

• On a 1Gbps link with 100ms delay that’s

1Gbps× 100ms× 125MB

1Gb
× 0.001s

1ms
= 12.5MB

• But stock buffers are far too small - only 64KB! Stock flows will use:
64KB

12.5MB
≈ .005, or

1
200

th of available bandwidth.

Here we see the bandwidth wasted
(Red) by a stock Linux 2.4.17
kernel (Green) for this case.

3

Why isn’t static hand-tuning good enough?

B
an

dw
id

th

Time

48 hours (noon-noon) on the LANL backbone at 1s granularity

4

Taxonomy of Tuning Techniques (1 of 2)

1. No tuning

• High Performance? What’s that?

2. Manual tuning – our baseline.

• A human gathers data on the network and sets “best guess” buffer sizes.

3. PSC’s Automatic Tuning – in NetBSD 1.2

• Mostly sender-based approach. Sender uses header info to guess
bandwidth × delay product. The receiver simply advertises the maximal
possible window.

4. Dynamic Right-Sizing (DRS) – in Linux 2.2 and 2.4;

• Mostly receiver-based approach where the receiver estimates bandwidth×
delay and congestion-control state of sender; receiver advertises a
window large enough that the sender is not flow-window limited.

5

Taxonomy of Tuning Techniques (2 of 2)

5. Linux 2.4 Auto-tuning

• Network unaware memory management technique; increases/decreases
buffering based on available system memory and utilized socket buffer
space.

6. Enable tuning

• A daemon collects data on network state and saves it to a database. Hosts
query the database to set their buffer sizes.

7. NLANR’s Auto-tuned FTP (in ncFTP)

• FTP program probes network at start of connection and sets buffer sizes
appropriately.

8. LANL’s DRS FTP (in wuFTP)

• FTP program uses a new control language command to gain network
information, which is used to tune buffers during the life of a connection.

6

Tuning Techniques– Features
Tuning Level Changes Band Visibility

PSC Kernel Dynamic In Transparent
Linux 2.4 Kernel Dynamic In Transparent

DRS Kernel Dynamic In Transparent
Enable User Static Out Visible

NLANR FTP User Static Out Opaque
DRS FTP User Dynamic Both Opaque

Manual Both Static Out Visible

User-level versus Kernel-level : where does the buffer tuning occur– via a
user setsockopt() call or in the kernel itself?

Static versus Dynamic : are tuned buffers a constant size set at the start
of a connection, or does the size change with network “weather”?

In-Band versus Out-of-Band : is tuning information gathered via the
connection itself or by some other means?

Transparent versus Visible : how inconvenient is it for a user to deal with
a tuning method?

7

Experiments – Parameters

• Constant Parameters

– Topology : 1 host to 1 host; possibly multiple streams per host.
– Unidirectional Transfers : Source to destination.
– Loss : None on purpose; may occur on-host (buffer over-runs/scheduling).
– Data Transfer : Simple TCP-based program to mimic message-passing

traffic (1MB message, 128 times).
– Hardware : Two machines: dual 933MHz PIII, 512MB memory,

64bit/66MHz PCI bus, Alteon Tigon II Gigabit Ethernet card.

• Varied Parameters

– Tuning : None, Manual, 2.4-Autotuning, Dynamic Right-Sizing (DRS).
– Max/Default Buffer Sizes : 32KB to 32MB.

May be set at user level (setsockopt()), kernel level (/proc), or both.
– Network Delay : ≈0.5ms, 25ms, 50ms, 100ms.

Shows differences between LAN and WAN environments.
– Parallel Streams : 1, 2, 4, 8.

Shows tuning scalability, effectiveness of this commonly-used technique.

8

No Tuning, 0.5ms

0

200

400

600

800

1000

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

• With such short delays, default 64KB buffers suffice. (bw × delay = 62.5KB)
• Software bottlenecks in NIC firmware/driver/stack cause peak at 800Mbps.
• DRS outperforms stock 2.4 stack which outperforms 2.2 stack.

due to stack improvements.
• All benefit from use of parallel streams –

due to effectively super-exponential slow start and additive increase by N.
9

Kernel-Only Tuning, 0.5ms

0

200

400

600

800

1000

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

• Increase the maximum memory the kernel may allocate to a connection.
• No significant change in results for 2.2.20 (which does no autotuning).
• One or two 2.4.17-Auto connections perform better than in the untuned case,

showing that the default 64KB buffers were insufficient (due to host delays).
• As the number of processes increases, DRS performs worse!

Too aggressive in buffer allocation; over-allocations can be bad.
TCP congestion-control & starvation of one or more processes.

10

User/Kernel Tuning with Ideal Sizes, 0.5ms

0

200

400

600

800

1000

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

• DRS obeys the user when buffers are set by setsockopt() ;
2.4.17-{Auto,DRS} use the same buffer sizes and perform about the same.
DRS memory checks make slightly less efficient stack.

• Stack improvements in 2.4.17 give better performance than 2.2.20.

11

Buffer Size and Performance, 2.4.17-Auto, 0.5ms

400

450

500

550

600

650

700

750

800

850

900

16KB 64KB 256KB 1MB 4MB 16MB 64MB

B
an

dw
id

th
 A

cq
ui

re
d

Buffer size

1 process
2 process
4 process
8 process

• “Ideal” buffer sizes are larger than one might expect (64KB).
• We need larger buffers to handle bursty (AIMD) TCP traffic.
• Feedback: large buffers can increase effective delay, and

AIMD problems more dramatic with large buffers.
• Scheduling problems: buffers may fill (and block) while we process other

sockets. This causes the dip seen with 4 and 8 processes around 1MB.

12

Summary, ≈0.5ms Delay
No Tuning Kernel-Only Tuning

0

200

400

600

800

1000

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

0

200

400

600

800

1000

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

User/Kernel Tuning, Ideal Sizes Buffer Size and Performance

0

200

400

600

800

1000

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

400

450

500

550

600

650

700

750

800

850

900

16KB 64KB 256KB 1MB 4MB 16MB 64MB

B
an

dw
id

th
 A

cq
ui

re
d

Buffer size

1 process
2 process
4 process
8 process

13

No Tuning, 25ms

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

• With more realistic delay, we have bandwidth× delay ≈ 3MB.

• Reveals default configuration inappropriate for high performance.

• Linear speed-up with more processes, as effective flow window grows.

• Simple autotuning outperforms DRS; more effective with small windows.

14

Kernel-Only Tuning, 25ms

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

• DRS improves, simple autotuning and stock connections are constant.
• Again the performance of DRS fall as the number of processes grows.
• The advertised window scaling factor in Linux 2.4.x is based on initial buffer

size, not the maximal buffer size up to which Linux can tune.
With only a maximum value set, Autotuning advertises no window scaling!

15

User/Kernel Tuning with Ideal Sizes, 25ms

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

• With user and kernel tuning, maximal performance increases for all stacks.
• Performance does fall for DRS in the two and four process case – second-

guessing the kernel can cause problems.
• DRS significantly outperforms 2.4 Autotuning because of window

advertisement algorithm.

16

Summary, 25ms Delay
No Tuning Kernel-Only Tuning

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

User/Kernel Tuning, Ideal Sizes This Space Intentionally Left Blank

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

17

Kernel-Only Tuning, 100ms

0

50

100

150

200

250

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

• We skip repetitive graphs of untuned cases;
this equation is captures their behavior with error below 20%:
Bandwidth(Mbps) = α(processes/delay), where
α = { 2.2.20-None: 214, 2.4.17-Auto: 467, 2.4.17-DRS: 355}.

• For delay > 25ms, TCP behavior dominates NIC/OS/etc. features.
• As earlier, DRS outperforms the other stacks. (Recall 2.2.20-None and

2.4.17-Auto do not benefit from kernel-only tuning).
18

User/Kernel Tuning with Ideal Sizes, 100ms

0

50

100

150

200

250

1 2 3 4 5 6 7 8

B
an

dw
id

th
 A

cq
ui

re
d

Number of Parallel Processes

2.2.20-none
2.4.17-Auto
2.4.17-DRS

• We see similar behavior to earlier graphs; 2.4.17-DRS and 2.4.17-Auto
perform about the same, with 2.2.20-None slightly worse.

• When rates fall to ≈ 100Mb (“old” Ethernet), the 2.2.20 stack performs well.
• Very large (multi-gigabyte, minimum) transfer sizes would be required to

more fully utilize the network.

19

Guidelines on Selecting an Auto-Tuned TCP

1. Willing & able to modify kernel, and run NetBSD or Linux?
Use a kernel-level solution.

• Like NetBSD?
Use PSC’s approach.

• Many small connections, or willing to tune parallel streams?
Use Linux 2.4 autotuning.

• Few, large connections, unwilling to tune?
Use Linux with DRS.

2. Unwilling or unable to modify kernel, don’t use NetBSD or Linux?
Use a user-level solution.

• Just need FTP?
Use LANL’s DRS FTP or NLANR’s Auto-tuned FTP.

• Require multiple applications?
Use Enable.

20

When tuning, remember to....

• Ensure specific TCP options are enabled/disabled:

– Window scaling on
– Timestamps on
– Selective acknowledgements on
– Nagel algorithm off

• Set the maximum memory available to allocate per connection or for user-
level tuning. Greater than the maximum bandwidth× delay expected

• Set min/max memory for Linux 2.4 autotuning.

• (Optional) Flush caches in between runs so inappropriately set slow-start
thresholds are not re-used.

• Beware of security (DoS) and performance issues with large buffers!

21

Conclusion
• There are many approaches to getting good network performance.
• TCP auto-tuning techniques are one important facet of a larger problem.
• Select a technique appropriate for your circumstances.

Thanks! Questions?

http://public.lanl.gov/ehw
http://www.lanl.gov/radiant

22

Bonus slide: Performance is still atrocious, what now?

• Try other protocols:

– Other versions of TCP; TCP Vegas, FACK, etc.
– A reliable UDP (Only if you have a dedicated line).
– Use RAPID.
– “Never underestimate the bandwidth of a truck full of tapes hurling down

the highway” – Andrew S. Tannenbaum

• Check for (proxying) firewalls between your source and destination; they
may need tuning too.

• Slack. Network speeds will catch up.

• Buy more fiber.

23

